Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1992 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Osteogenic protein-2. A new member of the transforming growth factor-beta superfamily expressed early in embryogenesis.

Authors: Patrick N. J. Schnegelsberg; D F Jin; Frederick Warren; E. A. Drier; G M Clifford; Hermann Oppermann; Engin Ozkaynak;

Osteogenic protein-2. A new member of the transforming growth factor-beta superfamily expressed early in embryogenesis.

Abstract

Osteogenic protein-2, OP-2, a new member of the transforming growth factor-beta (TGF-beta) superfamily, closely related to the osteogenic/bone morphogenetic proteins, was discovered in mouse embryo and human hippocampus cDNA libraries. The TGF-beta domain of OP-2 shows 74% identity to OP-1, 75% to Vgr-1, and 76% to BMP-5, hence OP-2 may also have bone inductive activity. The genomic locus of OP-2 has seven exons, like OP-1, and spans more than 27 kilobases (kb). In the C-terminal TGF-beta domain, OP-2 has a unique additional cysteine. Mouse embryos express relatively high levels of OP-2 mRNA at 8 days, two species of 3 and 5 kb. A careful study of mRNA expression of the osteogenic proteins in specific organs revealed discrete mRNA species for BMP-3, BMP-4, BMP-5, and BMP-6/Vgr-1 in lung or liver of young and adult mice. OP-1 is expressed in kidney; however, OP-2 and BMP-2 mRNAs were not detected in any organs studied, suggesting an early developmental role.

Keywords

Base Sequence, Molecular Sequence Data, Bone Morphogenetic Protein 2, Gene Expression, DNA, Exons, Embryo, Mammalian, Hippocampus, Embryonic and Fetal Development, Mice, Animals, Newborn, Oligodeoxyribonucleotides, Organ Specificity, Multigene Family, Bone Morphogenetic Proteins, Animals, Humans, Amino Acid Sequence, Cloning, Molecular, Gene Library

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    300
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
300
Top 10%
Top 1%
Top 1%
gold