
pmid: 35354033
Primary human hepatocytes are widely used to evaluate liver toxicity of drugs, but they are scarce and demanding to culture. Stem cell-derived hepatocytes are increasingly discussed as alternatives. To obtain a better appreciation of the molecular processes during the differentiation of induced pluripotent stem cells into hepatocytes, we employ a quantitative proteomic approach to follow the expression of 9,000 proteins, 12,000 phosphorylation sites, and 800 acetylation sites over time. The analysis reveals stage-specific markers, a major molecular switch between hepatic endoderm versus immature hepatocyte-like cells impacting, e.g., metabolism, the cell cycle, kinase activity, and the expression of drug transporters. Comparing the proteomes of two- (2D) and three-dimensional (3D)-derived hepatocytes with fetal and adult liver indicates a fetal-like status of the in vitro models and lower expression of important ADME/Tox proteins. The collective data enable constructing a molecular roadmap of hepatocyte development that serves as a valuable resource for future research.
Cell Reports, 38 (13)
ISSN:2666-3864
ISSN:2211-1247
Adult, Proteomics, Proteome, Induced Pluripotent Stem Cells, Hepatocytes, Humans, Cell Differentiation, ddc: ddc:
Adult, Proteomics, Proteome, Induced Pluripotent Stem Cells, Hepatocytes, Humans, Cell Differentiation, ddc: ddc:
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
