
doi: 10.1038/nature04819
pmid: 16810258
Riboswitches are cis-acting genetic regulatory elements found in the 5'-untranslated regions of messenger RNAs that control gene expression through their ability to bind small molecule metabolites directly. Regulation occurs through the interplay of two domains of the RNA: an aptamer domain that responds to intracellular metabolite concentrations and an expression platform that uses two mutually exclusive secondary structures to direct a decision-making process. In Gram-positive bacteria such as Bacillus species, riboswitches control the expression of more than 2% of all genes through their ability to respond to a diverse set of metabolites including amino acids, nucleobases and protein cofactors. Here we report the 2.9-angstroms resolution crystal structure of an S-adenosylmethionine (SAM)-responsive riboswitch from Thermoanaerobacter tengcongensis complexed with S-adenosylmethionine, an RNA element that controls the expression of several genes involved in sulphur and methionine metabolism. This RNA folds into a complex three-dimensional architecture that recognizes almost every functional group of the ligand through a combination of direct and indirect readout mechanisms. Ligand binding induces the formation of a series of tertiary interactions with one of the helices, serving as a communication link between the aptamer and expression platform domains.
Models, Molecular, S-Adenosylmethionine, Binding Sites, Base Sequence, Static Electricity, Azoarcus, Thermoanaerobacter, Gene Expression Regulation, Bacterial, Crystallography, X-Ray, Ligands, Introns, RNA, Bacterial, Methionine, Nucleic Acid Conformation, RNA, Messenger, Sulfur
Models, Molecular, S-Adenosylmethionine, Binding Sites, Base Sequence, Static Electricity, Azoarcus, Thermoanaerobacter, Gene Expression Regulation, Bacterial, Crystallography, X-Ray, Ligands, Introns, RNA, Bacterial, Methionine, Nucleic Acid Conformation, RNA, Messenger, Sulfur
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 370 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
