
doi: 10.1021/bi00143a011
pmid: 1633157
The catalytic mechanism of phosphoenolpyruvate (PEP) carboxylase from Zea mays has been studied using (Z)- and (E)-3-fluorophosphoenolpyruvate (F-PEP) as substrates. Both (Z)- and (E)-F-PEP partition between carboxylation to produce 3-fluorooxalacetate and hydrolysis to produce 3-fluoropyruvate. Carboxylation accounts for 3% of the reaction observed with (Z)-F-PEP, resulting in the formation of (R)-3-fluorooxalacetate, and for 86% of the reaction of (E)-F-PEP forming (S)-3-fluorooxalacetate. Carboxylation of F-PEP occurs on the 2-re face, which corresponds to the 2-si face of PEP. The partitioning of F-PEP between carboxylation and hydrolysis is insensitive to pH but varies with metal ion. Use of 18O-labeled bicarbonate produces phosphate that is multiply labeled with 18O; in addition, 18O is also incorporated into residual (Z)- and (E)-F-PEP. The 13(V/K) isotope effect on the carboxylation of F-PEP catalyzed by PEP carboxylase at pH 8.0, 25 degrees C, is 1.049 +/- 0.003 for (Z)-F-PEP and 1.009 +/- 0.006 for (E)-F-PEP. These results are consistent with a mechanism in which carboxylation of PEP occurs via attack of the enolate of pyruvate on CO2 rather than carboxy phosphate. In this mechanism phosphorylation of bicarbonate to give carboxy phosphate and decarboxylation of the latter are reversible steps. An irreversible step, however, precedes partitioning between carboxylation to give oxalacetate and release of CO2, which results in hydrolysis of PEP.
Magnetic Resonance Spectroscopy, Cations, Divalent, Hydrolysis, Carbon Dioxide, Hydrogen-Ion Concentration, Zea mays, Phosphoenolpyruvate Carboxylase, Phosphoenolpyruvate, Bicarbonates, Kinetics, Structure-Activity Relationship, Isomerism, Malate Dehydrogenase
Magnetic Resonance Spectroscopy, Cations, Divalent, Hydrolysis, Carbon Dioxide, Hydrogen-Ion Concentration, Zea mays, Phosphoenolpyruvate Carboxylase, Phosphoenolpyruvate, Bicarbonates, Kinetics, Structure-Activity Relationship, Isomerism, Malate Dehydrogenase
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 27 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
