Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ figsharearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
figshare
Collection . 2020
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
figshare
Collection . 2020
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

Sequence variations of ACVRL1 play a critical role in hepatic vascular malformations in hereditary hemorrhagic telangiectasia

Authors: Giraud, Sophie; Bardel, Claire; Dupuis-Girod, Sophie; Marie-France Carette; Gilbert-Dussardier, Brigitte; Riviere, Sophie; Jean-Christophe Saurin; +5 Authors

Sequence variations of ACVRL1 play a critical role in hepatic vascular malformations in hereditary hemorrhagic telangiectasia

Abstract

Abstract Background Hereditary Hemorrhagic Telangiectasia (HHT) is an autosomal dominant disorder characterized by multiple telangiectases and caused by germline disease-causing variants in the ENG (HHT1), ACVRL1 (HHT2) and, to a lesser extent MADH4 and GDF2, which encode proteins involved in the TGF-β/BMP9 signaling pathway. Common visceral complications of HHT are caused by pulmonary, cerebral, or hepatic arteriovenous malformations (HAVMs). There is large intrafamilial variability in the severity of visceral involvement, suggesting a role for modifier genes. The objective of the present study was to investigate the potential role of ENG, ACVRL1, and of other candidate genes belonging to the same biological pathway in the development of HAVMs. Methods We selected 354 patients from the French HHT patient database who had one disease causing variant in either ENG or ACVRL1 and who underwent hepatic exploration. We first compared the distribution of the different types of variants with the occurrence of HAVMs. Then, we genotyped 51 Tag-SNPs from the Hap Map database located in 8 genes that encode proteins belonging to the TGF-β/BMP9 pathway (ACVRL1, ENG, GDF2, MADH4, SMAD1, SMAD5, TGFB1, TGFBR1), as well as in two additional candidate genes (PTPN14 and ADAM17). We addressed the question of a possible genetic association with the occurrence of HAVMs. Results The proportion of patients with germline ACVRL1 variants and the proportion of women were significantly higher in HHT patients with HAVMs. In the HHT2 group, HAVMs were more frequent in patients with truncating variants. Six SNPs (3 in ACVRL1, 1 in ENG, 1 in SMAD5, and 1 in ADAM17) were significantly associated with HAVMs. After correction for multiple testing, only one remained significantly associated (rs2277383). Conclusions In this large association study, we confirmed the strong relationship between ACVRL1 and the development of HAVMs. Common polymorphisms of ACVRL1 may also play a role in the development of HAVMs, as a modifying factor, independently of the disease-causing variants.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities