Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mechanisms of Develo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanisms of Development
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanisms of Development
Article . 2001
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mechanisms of Development
Article . 2001 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Molecular cloning and expression analysis of the Hedgehog receptors XPtc1 and XSmo in Xenopus laevis

Authors: Koebernick, K.; Hollemann, T.; Pieler, T.;

Molecular cloning and expression analysis of the Hedgehog receptors XPtc1 and XSmo in Xenopus laevis

Abstract

Inductive signaling mediated by secreted factors of the Hedgehog (Hh) gene family regulates cellular proliferation and differentiation in many embryonic tissues. Two transmembrane proteins associated in a complex, Patched (Ptc) and Smoothened (Smo), are indispensable for the reception of Hh signals (Cell 86 (1996) 221; Nature 382 (1996) 547; Nature 384 (1996) 176; Nature 384 (1996) 129). Here, we report on the identification of Ptc and Smo homologues from Xenopus and analyze their spatio-temporal expression during embryogenesis. The intracellular response to Hh signals involves upregulation of Ptc transcription (Genes Dev. 10 (1996) 301; J. Biol. Chem. 271 (1996) 12125). In accordance with its putative function as Shh target gene, XPtc1 expression during early stages of Xenopus embryogenesis is detected in mesodermal and neuroectodermal tissues proximal to the notochord, a known expression domain of Shh. Although the expression pattern of XPtc1 was similar to that of other vertebrates, expression domains specific to Xenopus could be detected in the hypochord, dorsal mesencephalon, otic vesicles and pituitary anlage. Unlike other vertebrate Ptc1 homologues, somitic expression of XPtc1 is confined to a central cell layer. In contrast to the tissue-specific expression characteristics of XPtc1, XSmo expression appears to be ubiquitously activated in early embryonic stages but condenses in the terminal regions of the embryo at tailbud stage. In many tissues and organs of the adult, XPtc1 and XSmo are found to display similar expression levels.

Related Organizations
Keywords

Patched Receptors, Embryology, DNA, Complementary, Time Factors, Sequence Homology, Amino Acid, Transcription, Genetic, Reverse Transcriptase Polymerase Chain Reaction, Xenopus, Molecular Sequence Data, Notochord, Gene Expression, Membrane Proteins, Receptors, Cell Surface, Smoothened Receptor, Up-Regulation, Mesoderm, Ectoderm, Animals, Tissue Distribution, Amino Acid Sequence, Cloning, Molecular, Developmental Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Average
Average
Top 10%
Green
hybrid