Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2020 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Linear Arboricity Conjecture for 3-Degenerate Graphs

Authors: Manu Basavaraju; Arijit Bishnu; Mathew Francis; Drimit Pattanayak;

The Linear Arboricity Conjecture for 3-Degenerate Graphs

Abstract

A k-linear coloring of a graph G is an edge coloring of G with k colors so that each color class forms a linear forest—a forest whose each connected component is a path. The linear arboricity \(\chi _l'(G)\) of G is the minimum integer k such that there exists a k-linear coloring of G. Akiyama, Exoo and Harary conjectured in 1980 that for every graph G, \(\chi _l'(G)\le \left\lceil \frac{\varDelta (G)+1}{2}\right\rceil \) where \(\varDelta (G)\) is the maximum degree of G. We prove the conjecture for 3-degenerate graphs. This establishes the conjecture for graphs of treewidth at most 3 and provides an alternative proof for the conjecture for triangle-free planar graphs. Our proof also yields an O(n)-time algorithm that partitions the edge set of any 3-degenerate graph G on n vertices into at most \(\left\lceil \frac{\varDelta (G)+1}{2}\right\rceil \) linear forests. Since \(\chi '_l(G)\ge \left\lceil \frac{\varDelta (G)}{2}\right\rceil \) for any graph G, the partition produced by the algorithm differs in size from the optimum by at most an additive factor of 1.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!