Powered by OpenAIRE graph
Found an issue? Give us feedback
Sciencearrow_drop_down
Science
Article . 2007 . Peer-reviewed
Data sources: Crossref
Science
Article . 2007
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

ATM and ATR Substrate Analysis Reveals Extensive Protein Networks Responsive to DNA Damage

Authors: Steven P. Gygi; Shuhei Matsuoka; Yosef Shiloh; Ji Luo; Zhenming Zhao; Yaniv Lerenthal; Corey E. Bakalarski; +7 Authors

ATM and ATR Substrate Analysis Reveals Extensive Protein Networks Responsive to DNA Damage

Abstract

Cellular responses to DNA damage are mediated by a number of protein kinases, including ATM (ataxia telangiectasia mutated) and ATR (ATM and Rad3-related). The outlines of the signal transduction portion of this pathway are known, but little is known about the physiological scope of the DNA damage response (DDR). We performed a large-scale proteomic analysis of proteins phosphorylated in response to DNA damage on consensus sites recognized by ATM and ATR and identified more than 900 regulated phosphorylation sites encompassing over 700 proteins. Functional analysis of a subset of this data set indicated that this list is highly enriched for proteins involved in the DDR. This set of proteins is highly interconnected, and we identified a large number of protein modules and networks not previously linked to the DDR. This database paints a much broader landscape for the DDR than was previously appreciated and opens new avenues of investigation into the responses to DNA damage in mammals.

Keywords

DNA Replication, Binding Sites, DNA Repair, Proteome, Cell Cycle, Computational Biology, Cell Cycle Proteins, Ataxia Telangiectasia Mutated Proteins, Protein Serine-Threonine Kinases, Cell Line, DNA-Binding Proteins, Mice, Isotope Labeling, Consensus Sequence, NIH 3T3 Cells, Animals, Humans, Immunoprecipitation, Phosphorylation, DNA Damage

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3K
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.01%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.01%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3K
Top 0.01%
Top 0.1%
Top 0.01%
Upload OA version
Are you the author? Do you have the OA version of this publication?