Powered by OpenAIRE graph
Found an issue? Give us feedback
ZENODOarrow_drop_down
ZENODO
Article . 2024
License: CC BY
Data sources: Datacite
ZENODO
Article . 2024
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Anticancer Effect of C19-Position Substituted Geldanamycin Derivatives Targeting NRF2-NQO1-activated Esophageal Squamous Cell Carcinoma

Authors: Kitson, Russell;

Anticancer Effect of C19-Position Substituted Geldanamycin Derivatives Targeting NRF2-NQO1-activated Esophageal Squamous Cell Carcinoma

Abstract

In esophageal squamous cell carcinoma, genetic activation of NRF2 increases resistance to chemotherapy and radiotherapy, which results in a significantly worse prognosis for patients. Therefore NRF2-activated cancers create an urgent clinical need to identify new therapeutic options. In this context, we previously identified the geldanamycin family of HSP90 inhibitors, which includes 17DMAG, to be synthetic lethal with NRF2 activity. As the first-generation of geldanamycin-derivative drugs were withdrawn from clinical trials due to hepatotoxicity, we designed second-generation compounds with C19- substituted structures in order to inhibit glutathione conjugation-mediated hepatotoxicity. In this study, using a variety of in vitro and in vivo cancer models, we found that C19-substituted 17DMAG compounds maintain their enhanced toxicity profile and synthetic lethal interaction with NRF2-NQO1-activated cancer cells. Importantly, using a xenograft mouse tumor model, we found that C19-substituted 17DMAG displayed significant anticancer efficacy against NRF2-NQO1-activated cancer cells without causing hepatotoxicity. These results clearly demonstrate the improved clinical potential for this new class of HSP90 inhibitor anticancer drugs, and suggest that patients with NRF2-NQO1-activated esophageal carcinoma may benefit from this novel therapeutic approach.

Keywords

ESCC, C19-position substituted geldanamycin derivatives, NQO1, NFR2-NQO1-activated cancer, HSP90 Heat-Shock Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities
Cancer Research
Upload OA version
Are you the author? Do you have the OA version of this publication?