Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PLoS Geneticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS Genetics
Article . 2009 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS Genetics
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS Genetics
Article . 2009
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2009
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS Genetics
Article . 2009
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Level of the Transcription Factor Pax6 Is Essential for Controlling the Balance between Neural Stem Cell Self-Renewal and Neurogenesis

Authors: Sansom, Stephen N; Griffiths, Dean S; Faedo, Andrea; Kleinjan, Dirk-Jan; Ruan, Youlin; Smith, James; van Heyningen, Veronica; +2 Authors

The Level of the Transcription Factor Pax6 Is Essential for Controlling the Balance between Neural Stem Cell Self-Renewal and Neurogenesis

Abstract

Neural stem cell self-renewal, neurogenesis, and cell fate determination are processes that control the generation of specific classes of neurons at the correct place and time. The transcription factor Pax6 is essential for neural stem cell proliferation, multipotency, and neurogenesis in many regions of the central nervous system, including the cerebral cortex. We used Pax6 as an entry point to define the cellular networks controlling neural stem cell self-renewal and neurogenesis in stem cells of the developing mouse cerebral cortex. We identified the genomic binding locations of Pax6 in neocortical stem cells during normal development and ascertained the functional significance of genes that we found to be regulated by Pax6, finding that Pax6 positively and directly regulates cohorts of genes that promote neural stem cell self-renewal, basal progenitor cell genesis, and neurogenesis. Notably, we defined a core network regulating neocortical stem cell decision-making in which Pax6 interacts with three other regulators of neurogenesis, Neurog2, Ascl1, and Hes1. Analyses of the biological function of Pax6 in neural stem cells through phenotypic analyses of Pax6 gain- and loss-of-function mutant cortices demonstrated that the Pax6-regulated networks operating in neural stem cells are highly dosage sensitive. Increasing Pax6 levels drives the system towards neurogenesis and basal progenitor cell genesis by increasing expression of a cohort of basal progenitor cell determinants, including the key transcription factor Eomes/Tbr2, and thus towards neurogenesis at the expense of self-renewal. Removing Pax6 reduces cortical stem cell self-renewal by decreasing expression of key cell cycle regulators, resulting in excess early neurogenesis. We find that the relative levels of Pax6, Hes1, and Neurog2 are key determinants of a dynamic network that controls whether neural stem cells self-renew, generate cortical neurons, or generate basal progenitor cells, a mechanism that has marked parallels with the transcriptional control of embryonic stem cell self-renewal.

Country
United Kingdom
Keywords

Male, PAX6 Transcription Factor, Neurogenesis, Mice, Transgenic, Neocortex, QH426-470, Mice, Genetics, Animals, Paired Box Transcription Factors, Eye Proteins, Promoter Regions, Genetic, Cells, Cultured, Homeodomain Proteins, Neurons, Mice, Inbred BALB C, Stem Cells, Gene Expression Regulation, Developmental, Mice, Inbred C57BL, Repressor Proteins, Female, Research Article, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    354
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
354
Top 1%
Top 10%
Top 1%
Green
gold