
handle: 10433/19481
This paper solves optimization problems where both the objective and constraints are given by fuzzy functions. In order to get it, we first prove that these problems are equivalent to optimization problems where the constraints functions are non-fuzzy functions and we introduce a new and wider stationary point concept that generalizes all existing concepts so far. This new stationary point concept is based on the gH-differentiability and has many computational advantages that we describe. It is well-known that obtain a useful differentiability notion for fuzzy functions is a difficult task without linearity. And we are in that case due to the fact that the fuzzy numbers (intervals) space is a nonlinear one. In this direction, the gH-derivative for fuzzy functions is a concept that is more general than Hukuhara and level-wise derivatives that are usually used in fuzzy optimization so far, in the sense that they can be applied to a wider number of fuzzy function classes than above concepts. With this new differentiability concept, we prove a necessary optimality condition for fuzzy optimization problems that is more operational and less restrictive that the few ones we can find in the literature so far. Moreover, due to the fact that we do not have a linear space for fuzzy numbers, the convex concepts and generalized convex fuzzy function notion are very restrictive, also. This implies that the sufficiency optimality conditions for fuzzy problems published so far are not useful.
Fuzzy real analysis, Fuzzy optimality conditions, Fuzzy and other nonstochastic uncertainty mathematical programming, fuzzy optimality conditions, Fuzzy generalized convexity, Optimality conditions and duality in mathematical programming, fuzzy constrained optimization, fuzzy generalized convexity, Fuzzy constrained optimization, gH-differentiable fuzzy mappings
Fuzzy real analysis, Fuzzy optimality conditions, Fuzzy and other nonstochastic uncertainty mathematical programming, fuzzy optimality conditions, Fuzzy generalized convexity, Optimality conditions and duality in mathematical programming, fuzzy constrained optimization, fuzzy generalized convexity, Fuzzy constrained optimization, gH-differentiable fuzzy mappings
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
