Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bloodarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Blood
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Cancer
Article . 2010 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Cancer
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Cancer
Article . 2010
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2010
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Cancer
Article . 2010
Data sources: DOAJ
Blood
Article . 2009 . Peer-reviewed
Data sources: Crossref
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Polycomb Repressor Complex 2 Regulates HOXA9 and HOXA10, Activating ID2 in NK/T-Cell Lines.

Authors: MacLeod Roderick AF; Scherr Michaela; Kaufmann Maren; Meyer Corinna; Marquez Victor E; Venturini Letizia; Nagel Stefan; +1 Authors

Polycomb Repressor Complex 2 Regulates HOXA9 and HOXA10, Activating ID2 in NK/T-Cell Lines.

Abstract

Abstract Abstract 1281 Poster Board I-303 Many oncogenes code for transcription factors involved in regulation of developmental pathways. The activity of these pathways is tissue specific and restricted to certain developmental stages. Here, we searched for T-cell acute lymphoblastic leukemia (T-ALL) oncogenes which physiologically regulate differentiation of natural killer (NK) cells. NK- and T-cells are closely related lymphocytes, sharing the same early progenitors which can differentiate into either lineage. We compared expression profiles of malignant NK- and T-cell lines to identify aberrantly expressed genes in T-ALL. This analysis revealed high expression of HOXA9, HOXA10 and ID2 in NK-cell lines and in one T-ALL line, LOUCY, suggesting leukemic deregulation therein. Subsequently, we analyzed mechanisms underlying their regulation. Overexpression and chromatin immuno-precipitation experiments demonstrated that HOXA9 and HOXA10 directly activate ID2 expression. Analysis of other ALL and acute myeloid leukemia cell lines with and without mixed lineage leukemia (MLL) gene translocations demonstrated a correlated expression of HOXA9/10 and ID2, highlighting ID2 as an indirect target of MLL fusion proteins which deregulate HOXA genes. Furthermore, profiling data of genes coding for chromatin regulators of homeobox genes, including the components EZH2 and HOP of polycomb repressor complex 2 (PRC2), showed downregulation of EZH2 in LOUCY and limited expression of HOP to NK-cell lines. Subsequent treatment of T-ALL cell lines JURKAT and LOUCY with DZNep, an inhibitor of EZH2/PRC2, resulted in elevated and unchanged HOXA9/10 expression levels, respectively, confirming repressive activity of EZH2 in T-cells. Additionally, profiling data and overexpression analysis indicated that reduced expression of E2F cofactor TFDP1 contributed to the lack of EZH2 in LOUCY. Forced expression of HOP in JURKAT cells resulted in reduced HOXA10 and ID2 expression levels, suggesting enhancement of PRC2 repression. Taken together, our results show that major differentiation factors of the NK-cell lineage, including HOXA9, HOXA10 and ID2, were (de)regulated via PRC2 and may contribute to T-cell leukemogenesis. Disclosures No relevant conflicts of interest to declare.

Keywords

Homeodomain Proteins, Cancer Research, Chromatin Immunoprecipitation, Research, Gene Expression Profiling, T-Lymphocytes, Blotting, Western, Neoplasms. Tumors. Oncology. Including cancer and carcinogens, Gene Expression, Polycomb-Group Proteins, Precursor T-Cell Lymphoblastic Leukemia-Lymphoma, Polymerase Chain Reaction, Cell Line, Killer Cells, Natural, Repressor Proteins, Homeobox A10 Proteins, Oncology, Gene Expression Regulation, Molecular Medicine, Humans, Promoter Regions, Genetic, RC254-282, In Situ Hybridization, Fluorescence, Inhibitor of Differentiation Protein 2, Oligonucleotide Array Sequence Analysis

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Top 10%
Average
Green
gold
Related to Research communities
Cancer Research