Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Annals of Clinical a...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Annals of Clinical and Translational Neurology
Article . 2022 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

New phenotype of RTN2‐related spectrum: Complicated form of spastic paraplegia‐12

Authors: Wotu Tian; Haoran Zheng; Zeyu Zhu; Chao Zhang; Xinghua Luan; Li Cao;

New phenotype of RTN2‐related spectrum: Complicated form of spastic paraplegia‐12

Abstract

AbstractObjectiveSpastic paraplegia‐12 (SPG12) is a subtype of hereditary spastic paraplegia caused by Reticulon‐2 (RTN2) mutations. We described the clinical and genetic features of three SPG12 patients, functionally explored the potential pathogenic mechanism of RTN2 mutations, and reviewed RTN2‐related cases worldwide.MethodsThe three patients were 31, 36, and 50 years old, respectively, with chronic progressive lower limb spasticity and walking difficulty. Physical examination showed elevated muscle tone, hyperreflexia and Babinski signs in the lower limbs. Patients 1 and 3 additionally had visual, urinary, and/or coordination dysfunctions. Patient 2 also had epileptic seizures. RTN2 mutations were identified by whole‐exome sequencing, followed by Sanger sequencing, segregation analysis, and phenotypic reevaluation. Functional examination of identified mutations was further explored.ResultsThree variants in RTN2 were identified in Patient 1 (c.103C>T, p.R35X), Patient 2 (c.230G>A, p.G77D), and Patient 3 (c.337C>A, p.P113T) with SPG, respectively. Western blotting revealed the p.R35X with smaller molecular weight than WT and other two missense mutants. Immunostaining showed the wild type colocalized with endoplasmic reticulum (ER) in vitro. p.R35X mutant diffusely distributes in the cytoplasm, losing colocalization with ER. p.G77D and p.P113T co‐localized with ER, which was abnormally aggregated in clumps.InterpretationIn this study, we identified three cases with complicated SPG12 due to three novel RTN2 mutations, respectively, presenting various phenotypes: classic SPG symptoms with (1) visual abnormalities and sphincter disturbances or (2) seizures. The phenotypic heterogeneity might arise from the abnormal subcellular localization of mutant Reticulon‐2 and improper ER morphogenesis, revealing the RTN2‐related spectrum is still expanding.

Related Organizations
Keywords

Paraplegia, Spastic Paraplegia, Hereditary, Membrane Proteins, Muscle Proteins, Neurosciences. Biological psychiatry. Neuropsychiatry, Nerve Tissue Proteins, Endoplasmic Reticulum, Phenotype, Mutation, Humans, Neurology. Diseases of the nervous system, RC346-429, Research Articles, RC321-571

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Green
gold