Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2004 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

p73 Induces Apoptosis via PUMA Transactivation and Bax Mitochondrial Translocation

Authors: Melino G; Bernassola F; Ranalli M; Yee K; Zong WX; Knight RA; Green DR; +3 Authors

p73 Induces Apoptosis via PUMA Transactivation and Bax Mitochondrial Translocation

Abstract

p73, an important developmental gene, shares a high sequence homology with p53 and induces both G(1) cell cycle arrest and apoptosis. However, the molecular mechanisms through which p73 induces apoptosis are unclear. We found that p73-induced apoptosis is mediated by PUMA (p53 up-regulated modulator of apoptosis) induction, which, in turn, causes Bax mitochondrial translocation and cytochrome c release. Overexpression of p73 isoforms promotes cell death and bax promoter transactivation in a time-dependent manner. However, the kinetics of apoptosis do not correlate with the increase of Bax protein levels. Instead, p73-induced mitochondrial translocation of Bax is kinetically compatible with the induction of cell death. p73 is localized in the nucleus and remains nuclear during the induction of cell death, indicating that the effect of p73 on Bax translocation is indirect. The ability of p73 to directly transactivate PUMA and the direct effect of PUMA on Bax conformation and mitochondrial relocalization suggest a molecular link between p73 and the mitochondrial apoptotic pathway. Our data therefore indicate that PUMA-mediated Bax mitochondrial translocation, rather than its direct transactivation, correlates with cell death. Finally, human DeltaNp73, an isoform lacking the amino-terminal transactivation domain, inhibits TAp73-induced as well as p53-induced apoptosis. The DeltaNp73 isoforms seem therefore to act as dominant negatives, repressing the PUMA/Bax system and, thus, finely tuning p73-induced apoptosis. Our findings demonstrate that p73 elicits apoptosis via the mitochondrial pathway using PUMA and Bax as mediators.

Country
Italy
Keywords

Mice, Knockout, 570, 610, Cytochromes c, Gene Expression, Nuclear Proteins, Apoptosis, Biological Transport, DNA Fragmentation, Cell Line, Mitochondria, DNA-Binding Proteins, Kinetics, Mice, Cytosol, Animals, Humans, Genes, Tumor Suppressor, Apoptosis Regulatory Proteins, Luciferases, Promoter Regions, Genetic, HeLa Cells

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    321
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
321
Top 10%
Top 1%
Top 1%
gold