Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Protein aggregation due to nsSNP resulting in P56S VABP protein is associated with amyotrophic lateral sclerosis

Authors: Rayapadi G. Swetha; Chundi Vinay Kumar; Sudha Ramaiah; K. M. Kumar; Anand Anbarasu;

Protein aggregation due to nsSNP resulting in P56S VABP protein is associated with amyotrophic lateral sclerosis

Abstract

Mutations in the gene encoding vesicle-associated membrane protein (VAPB) cause amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder. The VAPB gene is mapped to chromosome number 20 and can be found at cytogenetic location 20q13.33 of the chromosome. VAPB is seen to play a significant role in the unfolded protein response (UPR), which is a process that suppresses the accumulation of unfolded proteins in the endoplasmic reticulum. Earlier studies have reported two points; which we have analyzed in our study. Firstly, the mutation P56S in the VAPB is seen to increase the stability of the protein and secondly, the mutation P56S in VAPB is seen to interrupt the functioning of the gene and loses its ability to be involved in the activation of the IRE1/XBP1 pathway which leads to ALS. With correlation on the previous research studies on the stability of this protein, we carried out Molecular dynamics (MD) simulation. We analyzed the SNP results of 17 nsSNPs obtained from dbSNP using SIFT, polyphen, I-Mutant, SNP&GO, PhDSNP and Mutpred to predict the role of nsSNPs in VAPB. MD simulation is carried out and plots for RMSD, RMSF, Rg, SASA, H-bond and PCA are obtained to check and prove the stability of the wild type and the mutant protein structure. The protein is checked for its aggregation and the results obtained show changes in the protein structure that might result in the loss of function.

Keywords

Amino Acid Substitution, Amyotrophic Lateral Sclerosis, Mutation, Missense, Unfolded Protein Response, Datasets as Topic, Humans, Kv Channel-Interacting Proteins, Molecular Dynamics Simulation, Polymorphism, Single Nucleotide, Protein Aggregation, Pathological

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Average
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?