Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Neurobiol...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Neurobiology
Article . 2001 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The neurotrophin receptors, trkB and p75, differentially regulate motor axonal regeneration

Authors: J G, Boyd; T, Gordon;

The neurotrophin receptors, trkB and p75, differentially regulate motor axonal regeneration

Abstract

AbstractNeurotrophic factors that support neuronal survival are implicated in axonal regeneration after injury. Specifically, a strong role for BDNF in motor axonal regeneration has been suggested based on its pattern of expression after injury, as well as the expression of its receptors, trkB and p75. Despite considerable in vitro evidence, which demonstrate specific and distinct physiological responses elicited following trkB and p75 activation, relatively little is known about the function of these receptors in vivo. To investigate the roles of the trkB and p75 receptors in motor axonal regeneration, we have used a tibial (TIB)‐ common peroneal (CP) cross suture paradigm in p75 homozygous (−/−) knockout mice, trkB heterozygous (+/−) knockout mice, as well as in their wild‐type controls. Contralateral intact TIB motoneurons, and axotomized TIB motoneurons that regenerated their axons 10 mm into the CP distal nerve stump were identified by fluorescent retrograde tracers and counted in the T11‐L1 spinal segments. Regeneration was evaluated 2, 3, 4, 6, and 8 weeks after nerve repair. Compared to wild‐type animals, there are significantly fewer intact TIB motoneurons in p75 (−/−), but not trkB (+/−) mice. The number of motoneurons that regenerated their axons was significantly increased in the p75 (−/−) knockout mice, but significantly attenuated in the trkB (+/−) mice compared to wild‐type controls. These results suggest that p75 is important for motoneuronal survival during development, but p75 expression after injury serves to inhibit motor axonal regeneration. In addition, full expression of trkB is critical for complete axonal regeneration to proceed. © 2001 John Wiley & Sons, Inc. J Neurobiol 49: 314–325, 2001

Related Organizations
Keywords

Mice, Knockout, Motor Neurons, Cell Survival, Reverse Transcriptase Polymerase Chain Reaction, Axotomy, Cell Count, Receptors, Nerve Growth Factor, Receptor, Nerve Growth Factor, Axons, Nerve Regeneration, Mice, Inbred C57BL, Perfusion, Mice, Animals, Receptor, trkB, Tibial Nerve

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    125
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
125
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!