Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Psychophysiology
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Randomly dividing homologous samples leads to overinflated accuracies for emotion recognition

Authors: Shuang, Liu; Di, Zhang; Minpeng, Xu; Hongzhi, Qi; Feng, He; Xin, Zhao; Peng, Zhou; +2 Authors

Randomly dividing homologous samples leads to overinflated accuracies for emotion recognition

Abstract

There are numerous studies measuring the brain emotional status by analyzing EEGs under the emotional stimuli that have occurred. However, they often randomly divide the homologous samples into training and testing groups, known as randomly dividing homologous samples (RDHS), despite considering the impact of the non-emotional information among them, which would inflate the recognition accuracy. This work proposed a modified method, the integrating homologous samples (IHS), where the homologous samples were either used to build a classifier, or to be tested. The results showed that the classification accuracy was much lower for the IHS than for the RDHS. Furthermore, a positive correlation was found between the accuracy and the overlapping rate of the homologous samples. These findings implied that the overinflated accuracy did exist in those previous studies where the RDHS method was employed for emotion recognition. Moreover, this study performed a feature selection for the IHS condition based on the support vector machine-recursive feature elimination, after which the average accuracies were greatly improved to 85.71% and 77.18% in the picture-induced and video-induced tasks, respectively.

Related Organizations
Keywords

Adult, Male, Support Vector Machine, Emotions, Electroencephalography, Recognition, Psychology, Signal Processing, Computer-Assisted, Young Adult, Acoustic Stimulation, Pattern Recognition, Visual, Psychophysics, Humans, Female, Algorithms, Photic Stimulation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!