Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Califo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
genesis
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
genesis
Article . 2013 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
genesis
Article . 2014
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Nkx2‐5 lineage tracing visualizes the distribution of second heart field‐derived aortic smooth muscle

Authors: Harmon, Andrew W; Nakano, Atsushi;

Nkx2‐5 lineage tracing visualizes the distribution of second heart field‐derived aortic smooth muscle

Abstract

During embryonic development, smooth muscle within the ascending aorta arises from two distinct sources: second heart field progenitors and the neural crest. It has recently been hypothesized that the boundary between smooth muscle from these distinct origins may be particularly susceptible to acute aortic dissection. While the contribution of second heart field progenitors to the ascending aorta is well established, detailed mapping of the anatomical distribution of second heart field-derived smooth muscle at this smooth muscle boundary has yet to be observed using a committed cardiac progenitor Cre-lineage. Using Nkx2-5-Cre knockin mice, the anatomical distribution of second heart field derived aortic smooth muscle was mapped in detail. Specifically, Nkx2-5-Cre-labeled cells constitute the entirety of the smooth muscle layer at the aortic base and then become restricted to the adventitial side of the ascending aortic media. This distribution pattern is present by E12.5 in the embryo and persists throughout embryonic development. These data reveal previously unappreciated details regarding the anatomical distribution of second heart field-derived smooth muscle within the aorta as well as the non-cardiomyocyte fates labeled by the Nkx2-5-Cre lineage.

Country
United States
Keywords

Embryonic Development, Muscle, Smooth, Vascular, Paediatrics and Reproductive Medicine, Mice, Genes, Reporter, Vascular, Genetics, Animals, Reporter, Aorta, Homeodomain Proteins, Myocardium, Heart, Coronary Vessels, Genes, Neural Crest, Homeobox Protein Nkx-2.5, Muscle, Female, Smooth, Biochemistry and Cell Biology, Developmental Biology, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    53
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
53
Top 10%
Top 10%
Average
Green
bronze