
We revisit Gaussian Adaptation (GaA), a black-box optimizer for discrete and continuous problems that has been developed in the late 1960’s. This largely neglected search heuristic shares several interesting features with the well-known Covariance Matrix Adaptation Evolution Strategy (CMA-ES) and with Simulated Annealing (SA). GaA samples single candidate solutions from a multivariate normal distribution and continuously adapts its first and second moments (mean and covariance) such as to maximize the entropy of the search distribution. Sample-point selection is controlled by a monotonically decreasing acceptance threshold, reminiscent of the cooling schedule in SA. We describe the theoretical foundations of GaA and analyze some key features of this algorithm. We empirically show that GaA converges log-linearly on the sphere function and analyze its behavior on selected non-convex test functions.
SX00 SystemsX.ch, SX15 WingX, 570 Life sciences; biology, 1700 General Computer Science, 2614 Theoretical Computer Science
SX00 SystemsX.ch, SX15 WingX, 570 Life sciences; biology, 1700 General Computer Science, 2614 Theoretical Computer Science
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
