Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Internati...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of International Medical Research
Article
License: CC BY NC
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Correlation between Oxidative Stress and L-type Calcium Channel Expression in the Ventricular Myocardia of Selenium-deficient Mice

Authors: Wg G. Zhang; Q. Dong; R. Zhong; Fl L. Li; Hui Li; E. Chu; Cf F. Fang; +2 Authors

Correlation between Oxidative Stress and L-type Calcium Channel Expression in the Ventricular Myocardia of Selenium-deficient Mice

Abstract

Objective: Expression of the Cacna1c (calcium channel, voltage-dependent, Ltype, a1C subunit) gene was studied to investigate the relationship between oxidative stress and L-type calcium channels in the myocardium of seleniumdeficient mice. Methods: Selenium levels in liver and heart tissue samples from mice fed normal or selenium-deficientdiets were evaluated by fluorometry. In the same mice, glutathione peroxidase ( GPx) and Cacna1c gene expression were analysed, malondialdehyde (MDA) content and superoxide dismutase (SOD) activity were measured, oxidoreductase gene expression profiles were analysed (by DNA microarray), and myocardial structural changes were studied. Results: In selenium-deficient versus control mice, GPx expression and SOD activity were decreased, and Cacna1c expression and MDA concentration were increased. Selenoprotein oxidoreductase and nonselenoprotein oxidoreductase gene expression differed significantly between selenium-deficient and control mice. In selenium-deficient mice, myocardial fibres were separated by loose collagenous tissue; electron microscopy showed shortened sarcomeres, dilated sarcoplasmic reticulum, scattered myofibril lysis and increased mitochondria with amorphous matrix densities. Conclusion: L-type calcium channels were involved in selenium deficiency-induced cardiomyocyte injury, which was positively related to oxidative stress.

Related Organizations
Keywords

Male, Calcium Channels, L-Type, Superoxide Dismutase, Heart Ventricles, Myocardium, Brain, Gene Expression, Kidney, Diet, Mice, Inbred C57BL, Mice, Oxidative Stress, Selenium, Liver, Animals, Female, Reactive Oxygen Species, Selenoproteins, Transcriptome, Oligonucleotide Array Sequence Analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Average
Average
Average
gold