Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Gliaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Glia
Article . 2005 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Glia
Article . 2006
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Contactin is expressed in human astrocytic gliomas and mediates repulsive effects

Authors: Katrin Lamszus; Sabine Müller; Carmen Eckerich; Manfred Westphal; Ulrike Ulbricht; Svenja Zapf; Regina Fillbrandt;

Contactin is expressed in human astrocytic gliomas and mediates repulsive effects

Abstract

AbstractContactin is a cell surface adhesion molecule that is normally expressed by neurons and oligodendrocytes. Particularly high levels of contactin are present during brain development. Using subtractive cloning, we identified contactin transcripts as overexpressed in glioblastomas compared with normal brain. We confirmed contactin overexpression in glioblastomas at the protein level, and localized contactin to the surface of glial fibrillary acidic protein (GFAP)‐expressing glioblastoma cells. In contrast, normal astrocytes did not express contactin. Analyzing different types of astrocytic tumors, we detected an association between increasing malignancy grade and contactin expression. Functionally, contactin had repellent effects on glioma cells in vitro, as demonstrated by adhesion and migration assays. Overexpression of contactin by transfection into glioblastoma cells did not alter the proliferation rate or adhesion to various extracellular matrix proteins as well as adhesion to cells expressing the specific contactin ligand the protein tyrosine phosphatase ζ (PTPζ). Our findings suggest that contactin has repellent effects on glioma cells to which it is presented as a ligand, but it does not alter the proliferative or adhesive capacities of cells that overexpress the molecule. The repulsive properties of contactin may be a key factor in glioma disaggregation, and may contribute to the diffuse infiltration pattern characteristic of glioma cells in human brain. © 2005 Wiley‐Liss, Inc.

Keywords

Extracellular Matrix Proteins, Brain Neoplasms, Cell Adhesion Molecules, Neuronal, Cell Communication, Astrocytoma, Ligands, Gene Expression Regulation, Neoplastic, Cell Movement, Contactins, Astrocytes, Cell Line, Tumor, Glial Fibrillary Acidic Protein, Biomarkers, Tumor, Cell Adhesion, Humans, Neoplasm Invasiveness, Protein Tyrosine Phosphatases, Cell Aggregation, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!