Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Padua research Archi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Transactions on Cryptographic Hardware and Embedded Systems
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Open Access Repository
Article . 2022
License: CC BY
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

BreakMi: Reversing, Exploiting and Fixing Xiaomi Fitness Tracking Ecosystem

Authors: Marco Casagrande; Eleonora Losiouk; Mauro Conti; Mathias Payer; Daniele Antonioli;

BreakMi: Reversing, Exploiting and Fixing Xiaomi Fitness Tracking Ecosystem

Abstract

Xiaomi is the leading company in the fitness tracking industry. Successful attacks on its fitness tracking ecosystem would result in severe consequences, including the loss of sensitive health and personal data. Despite these relevant risks, we know very little about the security mechanisms adopted by Xiaomi. In this work, we uncover them and show that they are insecure. In particular, Xiaomi protects its fitness tracking ecosystem with custom application-layer protocols spoken over insecure Bluetooth Low-Energy (BLE) connections (ignoring standard BLE security mechanisms already supported by their devices) and TLS connections. We identify severe vulnerabilities affecting such proprietary protocols, including unilateral and replayable authentication. Those issues are critical as they affect all Xiaomi trackers released since 2016 and up-to-date Xiaomi companion apps for Android and iOS. We show in practice how to exploit the identified vulnerabilities by presenting six impactful attacks. Four attacks enable to wirelessly impersonate any Xiaomi fitness tracker and companion app, man-in-the-middle (MitM) them, and eavesdrop on their communication. The other two attacks leverage a malicious Android application to remotely eavesdrop on data from a tracker and impersonate a Xiaomi fitness app. Overall, the attacks have a high impact as they can be used to exfiltrate and inject sensitive data from any Xiaomi tracker and compatible app. We propose five practical and low-overhead countermeasures to mitigate the presented vulnerabilities. Moreover, we present breakmi, a modular toolkit that we developed to automate our reverse-engineering process and attacks. breakmi understands Xiaomi application-layer proprietary protocols, reimplements Xiaomi security mechanisms, and automatically performs our attacks. We demonstrate that our toolkit can be generalized by extending it to be compatible with the Fitbit ecosystem. We will open-source breakmi.

Keywords

TK7885-7895, Bluetooth Low Energy; Fitness Tracker; IoT; Reverse Engineering;, IoT, Computer engineering. Computer hardware, Reverse Engineering, Fitness Tracker, Bluetooth Low Energy, General Medicine, Information technology, T58.5-58.64

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Green
Published in a Diamond OA journal