Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biological Trace Ele...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biological Trace Element Research
Article . 2007 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

New Developments in Selenium Biochemistry: Selenocysteine Biosynthesis in Eukaryotes and Archaea

Authors: Xu, Xue-Ming; Carlson, Bradley A.; Zhang, Yan; Mix, Heiko; Kryukov, Gregory V.; Glass, Richard S.; Berry, Marla J.; +2 Authors

New Developments in Selenium Biochemistry: Selenocysteine Biosynthesis in Eukaryotes and Archaea

Abstract

We used comparative genomics and experimental analyses to show that (1) eukaryotes and archaea, which possess the selenocysteine (Sec) protein insertion machinery contain an enzyme, O-phosphoseryl-transfer RNA (tRNA) [Ser]Sec kinase (designated PSTK), which phosphorylates seryl-tRNA [Ser]Sec to form O-phosphoseryl-tRNA [Ser]Sec and (2) the Sec synthase (SecS) in mammals is a pyridoxal phosphate-containing protein previously described as the soluble liver antigen (SLA). SecS uses the product of PSTK, O-phosphoseryl-tRNA[Ser]Sec, and selenophosphate as substrates to generate selenocysteyl-tRNA [Ser]Sec. Sec could be synthesized on tRNA [Ser]Sec from selenide, adenosine triphosphate (ATP), and serine using tRNA[Ser]Sec, seryl-tRNA synthetase, PSTK, selenophosphate synthetase, and SecS. The enzyme that synthesizes monoselenophosphate is a previously identified selenoprotein, selenophosphate synthetase 2 (SPS2), whereas the previously identified mammalian selenophosphate synthetase 1 did not serve this function. Monoselenophosphate also served directly in the reaction replacing ATP, selenide, and SPS2, demonstrating that this compound was the active selenium donor. Conservation of the overall pathway of Sec biosynthesis suggests that this pathway is also active in other eukaryotes and archaea that contain selenoproteins.

Country
United States
Keywords

Mammals, 570, Phosphotransferases, Biophysics, RNA, Transfer, Amino Acyl, 540, Biochemistry, Archaea, Models, Biological, Selenocysteine, Selenium, and Structural Biology, Animals, Humans, Selenoproteins

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Top 10%
bronze