
arXiv: 2204.02368
Generating sub-optimal synthesis transformation sequences ("synthesis recipe") is an important problem in logic synthesis. Manually crafted synthesis recipes have poor quality. State-of-the art machine learning (ML) works to generate synthesis recipes do not scale to large netlists as the models need to be trained from scratch, for which training data is collected using time consuming synthesis runs. We propose a new approach, Bulls-Eye, that fine-tunes a pre-trained model on past synthesis data to accurately predict the quality of a synthesis recipe for an unseen netlist. This approach on achieves 2x-10x run-time improvement and better quality-of-result (QoR) than state-of-the-art machine learning approaches.
10 pages, 6 Tables, 7 figures
FOS: Computer and information sciences, Computer Science - Machine Learning, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Hardware Architecture (cs.AR), Computer Science - Hardware Architecture, Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Hardware Architecture (cs.AR), Computer Science - Hardware Architecture, Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
