Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bloodarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Blood
Article
Data sources: UnpayWall
Blood
Article . 2011 . Peer-reviewed
Data sources: Crossref
Blood
Article . 2011
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Protein O-fucosyltransferase 1 (Pofut1) regulates lymphoid and myeloid homeostasis through modulation of Notch receptor ligand interactions

Authors: Yuanshuai Huang; Lebing Wei; Stanton L. Gerson; Pamela Stanley; David Yao; Wei Xin; Weihuan Wang; +4 Authors

Protein O-fucosyltransferase 1 (Pofut1) regulates lymphoid and myeloid homeostasis through modulation of Notch receptor ligand interactions

Abstract

AbstractNotch signaling is essential for lymphocyte development and is also implicated in myelopoiesis. Notch receptors are modified by O-fucosylation catalyzed by protein O-fucosyltransferase 1 (Pofut1). Fringe enzymes add N-acetylglucosamine to O-fucose and modify Notch signaling by altering the sensitivity of Notch receptors to Notch ligands. To address physiologic functions in hematopoiesis of Notch modified by O-fucose glycans, we examined mice with inducible inactivation of Pofut1 using Mx-Cre. These mice exhibited a reduction in T lymphopoiesis and in the production of marginal-zone B cells, in addition to myeloid hyperplasia. Restoration of Notch1 signaling rescued T lymphopoiesis and the marrow myeloid hyperplasia. After marrow transfer, both cell-autonomous and environmental cues were found to contribute to lymphoid developmental defects and myeloid hyperplasia in Pofut1-deleted mice. Although Pofut1 deficiency slightly decreased cell surface expression of Notch1 and Notch2, it completely abrogated the binding of Notch receptors with Delta-like Notch ligands and suppressed downstream Notch target activation, indicating that O-fucose glycans are critical for efficient Notch-ligand binding that transduce Notch signals. The combined data support a key role for the O-fucose glycans generated by Pofut1 in Notch regulation of hematopoietic homeostasis through modulation of Notch-ligand interactions.

Keywords

Mice, Knockout, Myelopoiesis, Hyperplasia, Integrases, Receptors, Notch, Lymphopoiesis, Cell Differentiation, Mice, Transgenic, Flow Cytometry, Fucosyltransferases, Ligands, Mice, Animals, Homeostasis, Humans, RNA, Messenger, Cells, Cultured, Hydro-Lyases, Bone Marrow Transplantation, Fucose

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    97
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
97
Top 10%
Top 10%
Top 10%
bronze