Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Vascular ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Vascular Surgery
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Vascular Surgery
Article . 2014
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Vascular Surgery
Article . 2014 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 3 versions
addClaim

PS216. Zizimin1 Overexpression Impairs Vascular Morphogenesis

Authors: Saadat, Siavash; Qi, Yanmei; Liu, Jie; Graham, Alan; Li, Shaohua;

PS216. Zizimin1 Overexpression Impairs Vascular Morphogenesis

Abstract

Objectives: The Rho subfamily of small GTPases, including RhoA, Rac1, and Cdc42, regulates diverse cellular functions, including polarity, migration, and actin-based cytoskeleton dynamics. Our prior studies established an essential role for Cdc42 in vascular network assembly, demonstrating that the genetic inactivation of Cdc42 yields defective vascular morphogenesis due to impaired migration of endothelial precursor cells. We have further shown that protein kinase Ciota and glycogen synthase kinase-3b are downstream effectors of Cdc42 and are involved in mediating vascular network assembly. However, the guanine nucleotide exchange factors (GEFs) that activate Cdc42, remain unknown. Methods: We performed affinity pulldown assays using a nucleotide-free Cdc42 G15A mutant that specifically binds to Cdc42 GEFs. Mass spectrometric analysis identified Zizimin1, an upstream regulatory protein, as a candidate Cdc42 GEF. Results: During vasculogenesis in embryoid bodies (EBs) differentiated from embryonic stem cells, Zizimin1 is highly expressed in aggregated endothelial cell precursors before vascular network formation. Surprisingly, stable overexpression of Zizimin1 in EBs resulted in the inhibition of blood vessel formation compared with control, evidenced by immunohistochemistry demonstrating loss of vascular network development. Affinity pulldown assay helped to elucidate that overexpression of Zizimin1 increases Cdc42 activity; however, the activation of Rac1 and RhoA is significantly inhibited. Conclusions: Because Rac1 and RhoA signaling has been reported to play an essential role in embryonic blood vessel formation, our results suggest that the interplay betweenRhoGTPases guides vascular network assembly during development. Furthermore, these findings provide novel insights into the mechanisms of embryonic vasculogenesis and also important new information for the design of potential proangiogenic and/or antiangiogenic therapies.

Keywords

Surgery, Cardiology and Cardiovascular Medicine

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
hybrid