
doi: 10.3390/info15010040
Fully homomorphic encryption (FHE) cryptographic systems enable limitless computations over encrypted data, providing solutions to many of today’s data security problems. While effective FHE platforms can address modern data security concerns in unsecure environments, the extended execution time for these platforms hinders their broader application. This project aims to enhance FHE systems through an efficient parallel framework, specifically building upon the existing torus FHE (TFHE) system chillotti2016faster. The TFHE system was chosen for its superior bootstrapping computations and precise results for countless Boolean gate evaluations, such as AND and XOR. Our first approach was to expand upon the gate operations within the current system, shifting towards algebraic circuits, and using graphics processing units (GPUs) to manage cryptographic operations in parallel. Then, we implemented this GPU-parallel FHE framework into a needed genomic data operation, specifically string search. We utilized popular string distance metrics (hamming distance, edit distance, set maximal matches) to ascertain the disparities between multiple genomic sequences in a secure context with all data and operations occurring under encryption. Our experimental data revealed that our GPU implementation vastly outperforms the former method, providing a 20-fold speedup for any 32-bit Boolean operation and a 14.5-fold increase for multiplications.This paper introduces unique enhancements to existing FHE cryptographic systems using GPUs and additional algorithms to quicken fundamental computations. Looking ahead, the presented framework can be further developed to accommodate more complex, real-world applications.
secure computation on GPU, parallel FHE framework, GPU parallel operations, secure string search using FHE, Information technology, fully homomorphic encryption, T58.5-58.64
secure computation on GPU, parallel FHE framework, GPU parallel operations, secure string search using FHE, Information technology, fully homomorphic encryption, T58.5-58.64
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
