Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Astronomy and Astrop...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Astronomy and Astrophysics
Article . 2013 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2013
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

GRB 110709B in the induced gravitational collapse paradigm

Authors: A. V. Penacchioni; A. V. Penacchioni; Jorge A. Rueda; Carlo Luciano Bianco; Luca Izzo; Remo Ruffini; Giovanni Battista Pisani; +2 Authors

GRB 110709B in the induced gravitational collapse paradigm

Abstract

Context: GRB110709B is the first source for which Swift BAT triggered twice, with a time separation of ~10 min. The first emission (Ep. 1) goes from 40s before the 1�� trigger up to 60s after it. The second (Ep. 2) goes from 35s before the 2�� trigger to 100s after it.[...] Within the Induced Gravitational Collapse (IGC) model, we assume the progenitor to be a close binary system composed of a core of an evolved star and a Neutron Star (NS). The evolved star explodes as a Supernova (SN) and ejects material that is partially accreted by the NS. We identify this process with Ep. 1. The accretion process brings the NS over its critical mass, thus gravitationally collapsing to a BH. This process leads to the GRB emission, Ep. 2.[...] Aims: We analyze the spectra and time variability of Ep. 1 and 2 and compute the relevant parameters of the binary progenitor[...] in the IGC paradigm. Methods: We perform a time-resolved spectral analysis of Ep. 1 with a blackbody (BB) plus a power-law (PL) spectral model. We analyze Ep. 2 within the Fireshell model, identifying the Proper-GRB (P-GRB) and simulating the light curve and spectrum. We establish the redshift to be z=0.75 [...]. Results: We find for Ep. 1 a BB temperature following a broken PL with time, with the PL slopes at early and late times ��=0 and ��=-4+/-2, respectively, and a break at t=41.21s. The total energy of Ep. 1 and 2 are E_{iso}^1=1.42x10^{53}erg and E_{iso}^2=2.43x10^{52}erg, respectively. We find at transparency a Lorentz factor ��~173, laboratory radius of 6.04x10^{13}cm, P-GRB observed temperature kT_{P-GRB}=12.36keV, baryon load B=0.0057 and P-GRB energy E_{P-GRB}=3.44x10^{50}erg. [...] Conclusions: We interpret GRB110709B as a member of the IGC sources, together with GRB970828, GRB090618 and GRB101023. The XRT data during Ep. 2 offers an unprecedented tool for improving the diagnostic of GRBs emission.

12 pages, 17 figures, to appear on A&A

Keywords

High Energy Astrophysical Phenomena (astro-ph.HE), Cosmology and Nongalactic Astrophysics (astro-ph.CO), FOS: Physical sciences, Astrophysics - High Energy Astrophysical Phenomena, Astrophysics - Cosmology and Nongalactic Astrophysics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Average
Average
Top 10%
Green
bronze