Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cell Communication a...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell Communication and Signaling
Article . 2009 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell Communication and Signaling
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2009
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A role for Fra1 in the control of transcriptional network reorganization following ras transformation

Authors: Seibt, ST; Solf, A; Steinhoff, C; Kielbasa, S; Szczurek, E; Vingron, M; Sers, C;

A role for Fra1 in the control of transcriptional network reorganization following ras transformation

Abstract

RAS proteins act as molecular switches transmitting signals from the cell surface to the nucleus, thereby affecting several downstream signaling cascades. Among these cascades, the mitogenic MEK/ERK pathway affects a network of transcription factors such as SRF, ELK and AP1 components, largely known to play an important role in regulating cellular proliferation. While the targets of individual transcription factors have been identified, the structure of the transcription factor network down-stream of MEK/ERK signaling mediating transformation is not well understood. In addition, both gene activation and repression are necessary for tumor formation and it is unclear how certain MEK/ERK stimulated transcription factors participate in both processes. We performed genome-wide gene expression analysis to identify transcription factors differentially regulated via MEK/ERK between immortalized and HRAS-transformed cells. Individual transcription factors such as Fra1, over-expressed in RAS-transformed cells and human tumors derived from lung or bone, were knocked-down using siRNA. A second gene expression profiling was used to determine the target genes of these transcription factors. TRAP (TRanscription factor Affinity Prediction), a biophysical model of transcription factor binding and gene set enrichment analysis (GSEA) was used to screen for genes with conserved binding motifs and for functional gene sets exhibiting similar regulation. These approaches revealed novel insights into the role of Fra1 upon activation in RAS-transformed cells. We could define a previously unknown involvement of the MEK/ERK-dependent Fra1 transcription factor in governing the alteration of the transcriptional network in tumor cells: Fra1 seems to play a role in chromatin remodeling and in circadian functions. In addition, we observed a Fra1-dependent suppression of interferon target genes, which are known to be regulated via DNA methylation. These data suggest a key role for the AP1 complex and the Fra1 transcription factor in the reorganization of chromatin and the transcriptional network following oncogenic transformation.

Keywords

Meeting Abstract, Cell Biology, Molecular Biology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold