Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao FEBS Journalarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
FEBS Journal
Article . 2012 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
FEBS Journal
Article . 2012
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Efficient oxidative folding and site‐specific labeling of human hepcidin to study its interaction with receptor ferroportin

Authors: Xiao, Luo; Qian, Jiang; Ge, Song; Ya-Li, Liu; Zeng-Guang, Xu; Zhan-Yun, Guo;

Efficient oxidative folding and site‐specific labeling of human hepcidin to study its interaction with receptor ferroportin

Abstract

Hepcidin is a small disulfide‐rich peptide hormone that plays a key role in the regulation of iron homeostasis by binding and mediating the degradation of the cell membrane iron efflux transporter, ferroportin. Since it is a small peptide, chemical synthesis is a suitable approach for the preparation of mature human hepcidin. However, oxidative folding of synthetic hepcidin is extremely difficult due to its high cysteine content and high aggregation propensity. To improve its oxidative folding efficiency, we propose a reversible S‐modification approach. Introduction of eight negatively charged sulfonate moieties into synthetic hepcidin significantly decreased its aggregation propensity and, under optimized conditions, dramatically increased the refolding yield. The folded hepcidin displayed a typical disulfide‐constrained β‐sheet structure and could induce internalization of enhanced green fluorescent protein (EGFP) tagged ferroportin in transfected HEK293 cells. In order to study interactions between hepcidin and its receptor ferroportin, we propose a general approach for site‐specific labeling of synthetic hepcidin analogues by incorporation of an l‐propargylglycine during chemical synthesis. Following efficient oxidative refolding, a hepcidin analogue with Met20 replaced by l‐propargylglycine was efficiently mono‐labeled by a red fluorescent dye through click chemistry. The labeled hepcidin was internalized into the transfected cells together with the EGFP‐tagged ferroportin, suggesting direct binding between hepcidin and ferroportin. The labeled hepcidin was also a suitable tool to visualize internalization of overexpressed or even endogenously expressed ferroportin without tags. We anticipate that the present refolding and labeling approaches could also be used for other synthetic peptides.

Related Organizations
Keywords

Protein Folding, Molecular Sequence Data, Endocytosis, Cell Line, Ferroportin, Hepcidins, Humans, Amino Acid Sequence, Cation Transport Proteins, Chromatography, High Pressure Liquid, Antimicrobial Cationic Peptides, Protein Binding

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!