Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geothermicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Geothermics
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Geothermics
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hydraulic history and current state of the deep geothermal reservoir Groß Schönebeck

Authors: Blöcher, G.; Reinsch, T.; Henninges, J.; Milsch, H.; Regenspurg, S.; Kummerow, J.; Francke, H.; +4 Authors

Hydraulic history and current state of the deep geothermal reservoir Groß Schönebeck

Abstract

Abstract This study addresses the thermal–hydraulic–mechanical and chemical (THMC) behaviour of a research well doublet consisting of the injection well E GrSk 3/90 and the production well Gt GrSk 4/05 A(2) in the deep geothermal reservoir of Gros Schonebeck (north of Berlin, Germany). The reservoir is located between 3815 and 4247 m below sea level in the Lower Permian of the North German Basin (NGB). Both wells were hydraulically stimulated to enhance productivity. For the production well three stimulation treatments were performed in 2007: these three treatments result in a productivity increase from 2.4 m3/(h MPa) to 14.7 m3/(h MPa). The injection well was stimulated four times in 2002/2003, resulting in a corresponding productivity increase from 0.97 m3/(h MPa) to 7.5 m3/(h MPa). The necessary infrastructure for production and subsequent injection of geothermal fluid was established in June 2011. Between June 8, 2011 and November 8, 2013, 139 individual hydraulic tests were performed with produced/injected volumes ranging from 4.4 to 2567 m3. The productivity index decreased non-linearly from 8.9 m3/(h MPa) on June 8, 2011 to 0.6 m3/(h MPa) on November 8, 2013. Five possible reasons for the productivity decrease are discussed: wellbore fill, wellbore skin, the sustainability of induced fractures, two phase flow and compartmentalisation. For all hydraulic tests, the injectivity index remains almost constant at 4.0 m3/(h MPa). During 17 of 139 hydraulic tests a sudden increase of the productivity was observed. Possible reasons for this effect are discussed: accumulation of free gas and/or fines and scales within the fracture as well as changing hydraulic properties due to changing mechanical load on the fracture.

Country
Germany
Keywords

550

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    77
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
77
Top 1%
Top 10%
Top 10%
Green
bronze