Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Gastroenterologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Gastroenterology
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Gastroenterology
Article . 2007 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Gastroenterology
Article . 2007
ZENODO
Article . 2007
Data sources: ZENODO
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Phases of Canonical Wnt Signaling During the Development of Mouse Intestinal Epithelium

Authors: Ramesh A. Shivdasani; Ramesh A. Shivdasani; Junhao Mao; Byeong-Moo Kim; Makoto Mark Taketo;

Phases of Canonical Wnt Signaling During the Development of Mouse Intestinal Epithelium

Abstract

Intestinal crypts constitute a niche in which epithelial progenitors respond to Wnt signals, replicate, and prepare to differentiate. Because mutations in Wnt pathway genes lead to intestinal cancer, the role of Wnt signaling in gut epithelial homeostasis is a subject of intense investigation. We studied how Wnt signaling is established during intestine development.We studied spatiotemporal features of Wnt signaling at formative stages in mouse embryos, when villous projections appear and crypt precursors occupy intervillus regions. We used TOP-GAL transgenic and Axin2(LacZ) mice, which report faithfully on canonical Wnt activity, relevant molecular markers, and embryos with aberrant beta-catenin activation.Developing intestines first display evidence for Wnt signaling after appearance of villi. During villus morphogenesis, intervillus cells proliferate actively but lack signs of canonical Wnt signaling. Surprisingly, in late gestation and briefly thereafter, conspicuous Wnt activity is evident in differentiated, postmitotic villus epithelium. Neither Tcf4, a principal transcriptional effector of intestinal Wnt signals, nor candidate Wnt targets CD44 and cyclinD1 are expressed in late fetal villus cells that show high Wnt activity. Instead, those cells express the related factor Tcf3 and a different Wnt target, c-Myc. Premature and deregulated beta-catenin activation causes severe villus dysmorphogenesis in transgenic mice.Relationships among Wnt signaling, epithelial proliferation, and tissue differentiation are reversed in the developing and adult gut. The canonical Wnt pathway has independent, albeit possibly overlapping, functions in early intestinal villi and adult crypts. These observations advance understanding of Wnt functions in intestinal development and disease.

Related Organizations
Keywords

Microvilli, Basic Helix-Loop-Helix Leucine Zipper Transcription Factors, Gene Expression Regulation, Developmental, Cell Differentiation, Epithelial Cells, Mice, Transgenic, Nerve Tissue Proteins, Proto-Oncogene Proteins c-myc, Cytoskeletal Proteins, Mice, Hyaluronan Receptors, Axin Protein, Genes, Reporter, Cyclin D, Cyclins, Animals, Hedgehog Proteins, Intestinal Mucosa, Embryonic Stem Cells, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    99
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 32
    download downloads 19
  • 32
    views
    19
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
99
Top 10%
Top 10%
Top 10%
32
19
hybrid
Related to Research communities
Cancer Research