Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Veterinar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Veterinary Research
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Veterinary Research
Article . 2024
Data sources: DOAJ
versions View all 3 versions
addClaim

High-throughput sequencing as a potential tool in the quality control of infectious bronchitis vaccines

Authors: Katarzyna Pasik; Katarzyna Domańska-Blicharz; Ewelina Iwan; Arkadiusz Bomba;

High-throughput sequencing as a potential tool in the quality control of infectious bronchitis vaccines

Abstract

Abstract Introduction In Europe, veterinary vaccines are strictly controlled by the Official Medicines Control Laboratories (OMCLs) of the General European OMCL Network, coordinated by the European Directorate for the Quality of Medicines & HealthCare. Despite a meticulous verification programme for immunological veterinary medicinal products (IVMPs), the products’ genomic composition has not yet been subject to evaluation in veterinary pharmacy. Material and Methods A study was carried out on Poland’s poultry vaccines containing the infectious bronchitis virus which have the greatest market penetration. Three batches of three different vaccines were high-throughput sequenced and analysed for genomic composition, frequency of variants and the phylogeny of the strains. Results The main genetic component of each vaccine was infectious bronchitis coronavirus. The identity of the vaccine strain types was confirmed to be consistent with the manufacturer's declaration (793B, Mass and QX). Most variants were identified for the same nucleotide positions in all three batches of each vaccine, demonstrating the homogeneity of the samples, while unique variants specific to single batches were rare. Conclusion High-throughput sequencing (HTS) is an effective alternative poultry IVMP quality control tool for OMCLs. This technique allows in-depth characterisation of a vaccine strain and assessment of its conformance to the manufacturer’s declaration. Importantly, HTS brings new cognitive value to IVMP quality control, because it makes monitoring the level of revertants possible. However, before it could be introduced into routine quality control, a thorough analysis and characteristics of the IVMP to be evaluated is needed from the medical product’s manufacturer.

Related Organizations
Keywords

official medicines control laboratory (omcl), vaccine, Veterinary medicine, SF600-1100, high-throughput sequencing (hts), infectious bronchitis virus (ibv), Article

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold