Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Regulating S -Nitrosylation

Authors: L. Bryan Ray;

Regulating S -Nitrosylation

Abstract

Covalent modification of proteins by S -nitrosylation is an important mechanism for regulation of biochemical activity in cells. However, mechanisms of protein denitrosylation have not been well characterized. The protease caspase-3, which promotes apoptosis, is inhibited by S -nitrosylation and is denitrosylated in cells in which the cell death-promoting receptor Fas is activated. Benhar et al . (see the Perspective by Holmgren) purified a protein fraction that catalyzed denitrosylation of caspase-3 and identified thioredoxin-1 (Trx1) as the protein most likely to be responsible for the denitrosylation activity. Depletion of Trx1 caused accumulation of S -nitrosylated caspase-3 and other S -nitrosylated proteins in cultured cells, and Fas-induced denitrosylation of caspase-3 was inhibited by depleting thioredoxin reductase 2. Thus, regulated denitrosylation of target proteins by Trx1 appears to provide a key component of enzymatic regulation of caspase-3 and possibly other proteins by S- nitrosylation. M. Benhar, M. T. Forrester, D. T. Hess, J. S. Stamler, Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins. Science 320 , 1050-1054 (2008). [Abstract] [Full Text] A. Holmgren, SNO Removal. Science 320 , 1019-1020 (2008). [Summary] [Full Text]

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!