Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oxford University Re...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Structural Biology
Article . 2006 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mechanical properties of cardiac titin’s N2B-region by single-molecule atomic force spectroscopy

Authors: Leake, M; Grützner, A; Krüger, M; Linke, W;

Mechanical properties of cardiac titin’s N2B-region by single-molecule atomic force spectroscopy

Abstract

Titin is a giant protein responsible for passive-tension generation in muscle sarcomeres. Here, we used single-molecule AFM force spectroscopy to investigate the mechanical characteristics of a recombinant construct from the human cardiac-specific N2B-region, which harbors a 572-residue unique sequence flanked by two immunoglobulin (Ig) domains on either side. Force-extension curves of the N2B-construct revealed mean unfolding forces for the Ig-domains similar to those of a recombinant fragment from the distal Ig-region in titin (I91-98). The mean contour length of the N2B-unique sequence was 120 nm, but there was a bimodal distribution centered at approximately 95 nm (major peak) and 180 nm (minor peak). These values are lower than expected if the N2B-unique sequence were a permanently unfolded entropic spring, but are consistent with the approximately 100 nm maximum extension of that segment measured in isolated stretched cardiomyofibrils. A contour-length below 200 nm would be reasonable, however, if the N2B-unique sequence were stabilized by a disulphide bridge, as suggested by several disulphide connectivity prediction algorithms. Since the N2B-unique sequence can be phosphorylated by protein kinase A (PKA), which lowers titin-based stiffness, we studied whether addition of PKA (+ATP) affects the mechanical properties of the N2B-construct, but found no changes. The softening effect of PKA on N2B-titin may require specific conditions/factors present inside the cardiomyocytes.

Related Organizations
Keywords

Models, Molecular, Sarcomeres, Myocardium, Molecular Sequence Data, Muscle Proteins, Microscopy, Atomic Force, Cyclic AMP-Dependent Protein Kinases, Models, Biological, Elasticity, Peptide Fragments, Biomechanical Phenomena, Animals, Autoradiography, Humans, Connectin, Amino Acid Sequence, Rabbits, Phosphorylation, Protein Kinases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Average
Top 10%
Top 10%
Green