
pmid: 11503013
Thiopurine S-methyltransferase (TPMT) activity exhibits genetic polymorphism. The purpose of this investigation was to identify TPMT mutant alleles in the Saami population as a basis of developing genotyping tests for prediction of TPMT activity. The most predominant allele in Saamis (n = 194) was the TPMT*3C allele (A719G mutation) representing 92% of the mutant alleles, with an estimated allelic frequency of 3.3%. The most frequent allele in Caucasians (n = 66) living in the same geographic area was the TPMT*3A (A719G and G460A mutations) representing 91% of the mutant alleles, with an estimated allelic frequency of 3.4%. A test for one mutation, A719G, may prospectively identify more than 90% of the Saami individuals who require reduction in thiopurine dose to avoid hematopoietic toxicity. In a Norwegian population, comprising both the major Caucasian population and a minor Saami population, the same genotyping tests (eg, tests for the A719G and G460A mutations) may be used.
Adult, Male, Polymorphism, Genetic, Genotype, Norway, Methyltransferases, Sequence Analysis, DNA, White People, Phenotype, Mutation, Humans, Female, Alleles
Adult, Male, Polymorphism, Genetic, Genotype, Norway, Methyltransferases, Sequence Analysis, DNA, White People, Phenotype, Mutation, Humans, Female, Alleles
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 39 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
