Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Plant Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Plant Cell
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Plant Cell
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Plant Cell
Article . 1995 . Peer-reviewed
Data sources: Crossref
The Plant Cell
Article . 1995
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mutations in the NPH1 Locus of Arabidopsis Disrupt the Perception of Phototropic Stimuli

Authors: Winslow R. Briggs; Emmanuel Liscum;

Mutations in the NPH1 Locus of Arabidopsis Disrupt the Perception of Phototropic Stimuli

Abstract

The phototropic response is an important component of seedling establishment in higher plants because it orients the young seedlings for maximal photosynthetic light capture. Despite their obvious importance, little is known about the mechanisms underlying the perception and transduction of the light signals that induce phototropic curvatures. Here, we report the isolation of eight mutants of Arabidopsis that lack or have severely impaired phototropic responses. These nph (for nonphototropic hypocotyl) mutants comprise four genetic loci: nph1, nph2, nph3, and nph4. Physiological and biochemical characterization of the nph1 allele series indicated that the NPH1 locus may encode the apoprotein for a dual-chromophoric or multichromophoric holoprotein photoreceptor capable of absorbing UV-A, blue, and green light and that this photoreceptor regulates all the phototropic responses of Arabidopsis. It appears that the NPH1 protein is most likely a 120-kD plasma membrane-associated phosphoprotein because all of the nph1 mutations negatively affected the abundance of this protein. In addition, the putative NPH1 photoreceptor protein is genetically and biochemically distinct from the HY4 protein, which most likely acts as a photoreceptor for blue light-mediated hypocotyl growth inhibition. Furthermore, the NPH1 and HY4 proteins are not functionally redundant because mutations in either gene alone affect only one physiological response but not the other, thus providing strong support for the hypothesis that more than one blue light photoreceptor is required for the normal growth and development of a seedling.

Related Organizations
Keywords

Flavoproteins, Arabidopsis Proteins, Photosynthetic Reaction Center Complex Proteins, Arabidopsis, Membrane Proteins, Protein Serine-Threonine Kinases, Genes, Plant, Phosphoproteins, Receptors, G-Protein-Coupled, Cryptochromes, Gravitropism, Phenotype, Gene Expression Regulation, Plant, Mutation, Seeds, Drosophila Proteins, Photoreceptor Cells, Invertebrate, Eye Proteins, Phototropism, Plant Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    398
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
398
Top 1%
Top 1%
Top 1%
bronze