Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Therapyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Therapy
Article . 2007 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Therapy
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Therapy
Article . 2007
License: CC BY NC ND
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mesenchymal Stem Cell-mediated Gene Delivery of Bone Morphogenetic Protein-2 in an Articular Fracture Model

Authors: Zachos, Terri; Diggs, Alisha; Weisbrode, Steven; Bartlett, Jeffrey; Bertone, Alicia;

Mesenchymal Stem Cell-mediated Gene Delivery of Bone Morphogenetic Protein-2 in an Articular Fracture Model

Abstract

In articular fractures, both bone and cartilage are injured. We tested whether stem cells transduced with bone morphogenetic protein 2 (BMP2) can promote bone and cartilage repair. Distal femoral articular osteotomies in nude rats were treated with stem cells, either wild-type or transduced with an adenoviral (Ad) BMP2. Cells were delivered in alginate (ALG) carrier or by direct injection in saline solution. Gene expression of these cells at the osteotomy site was confirmed by in vivo imaging. At day 14, only the group that received AdBMP2 stem cells by direct injection showed completely healed osteotomies, while other groups remained unhealed (P < 0.0003). In ALG groups, bone healing was impeded by the development of a chondroid mass, most pronounced in the AdBMP2 ALG group (P < 0.002). We were successful in achieving repair of both bone and cartilage in vivousing direct stem cell injection. Our data suggests that BMP2 augmentation might be critically important in achieving this effect.

Keywords

Male, Tomography Scanners, X-Ray Computed, Alginates, Bone Morphogenetic Protein 2, Adenoviridae, Fractures, Bone, Glucuronic Acid, Genes, Reporter, Transforming Growth Factor beta, Drug Discovery, Genetics, Animals, Humans, Molecular Biology, Pharmacology, Hexuronic Acids, Gene Transfer Techniques, Mesenchymal Stem Cells, Genetic Therapy, Osteotomy, Rats, Disease Models, Animal, Bone Morphogenetic Proteins, Molecular Medicine, Female

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    73
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
73
Top 10%
Top 10%
Top 10%
hybrid