
arXiv: 2503.10655
Interpreting the effects of variants within the human genome and proteome is essential for analysing disease risk, predicting medication response, and developing personalised health interventions. Due to the intrinsic similarities between the structure of natural languages and genetic sequences, natural language processing techniques have demonstrated great applicability in computational variant effect prediction. In particular, the advent of the Transformer has led to significant advancements in the field. However, transformer-based models are not without their limitations, and a number of extensions and alternatives have been developed to improve results and enhance computational efficiency. This systematic review investigates over 50 different language modelling approaches to computational variant effect prediction over the past decade, analysing the main architectures, and identifying key trends and future directions. Benchmarking of the reviewed models remains unachievable at present, primarily due to the lack of shared evaluation frameworks and data sets.
FOS: Computer and information sciences, Computer Science - Computation and Language, Artificial Intelligence (cs.AI), Quantitative Biology - Biomolecules, Computer Science - Artificial Intelligence, FOS: Biological sciences, Biomolecules (q-bio.BM), Review Article, Computation and Language (cs.CL)
FOS: Computer and information sciences, Computer Science - Computation and Language, Artificial Intelligence (cs.AI), Quantitative Biology - Biomolecules, Computer Science - Artificial Intelligence, FOS: Biological sciences, Biomolecules (q-bio.BM), Review Article, Computation and Language (cs.CL)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
