Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Neuroscie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Neuroscience
Article . 2008 . Peer-reviewed
License: CC BY NC SA
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Renewed Cocaine Exposure Produces Transient Alterations in Nucleus Accumbens AMPA Receptor-Mediated Behavior

Authors: David W. Self; Ryan K. Bachtell;

Renewed Cocaine Exposure Produces Transient Alterations in Nucleus Accumbens AMPA Receptor-Mediated Behavior

Abstract

Withdrawal from repeated cocaine is associated with increased synaptic and extrasynaptic AMPA receptor (AMPAR) expression in nucleus accumbens (NAc) neurons and enhanced behavioral sensitivity to AMPAR stimulation. Recent studies found that increased membrane expression of AMPARs is reversed or normalized on cocaine reexposure in withdrawal, but the mechanism for this AMPAR plasticity and the behavioral implications are unknown. Here, we examine the effects of renewed cocaine exposure during withdrawal on enhanced NAc AMPAR sensitivity and investigate the underlying mechanisms. Cocaine reexposure transiently reversed enhanced NAc AMPAR-mediated locomotion 1 d later, while enhancing cocaine-induced locomotion. Reversal in AMPAR sensitivity was prohibited by NAc AMPAR blockade with CNQX during cocaine reexposure and mimicked by intra-NAc infusions of AMPA, suggesting that cocaine-induced glutamate stimulation of NAc AMPARs is necessary for reversing AMPAR responsiveness. Similarly, systemic treatment with the dopamine D1-like agonist SKF 81297 [(±)-6-chloro-7,8-dihydroxy-l-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide] reversed AMPAR responsiveness in cocaine withdrawal, but the effect was prevented by local NAc AMPAR blockade in the NAc, and not local D1-like receptor blockade, suggesting a role for glutamate afferents in the reversal of enhanced AMPAR sensitivity. Together, these findings suggest that cocaine-induced glutamate release in sensitized animals is responsible for dynamic alterations in AMPAR function that contribute to enhanced cocaine sensitivity.

Keywords

Male, Neuronal Plasticity, Behavior, Animal, Receptors, Dopamine D1, Presynaptic Terminals, Glutamic Acid, Motor Activity, Nucleus Accumbens, Rats, Substance Withdrawal Syndrome, Rats, Sprague-Dawley, Cocaine-Related Disorders, Disease Models, Animal, Cocaine, Dopamine Uptake Inhibitors, Dopamine Agonists, Excitatory Amino Acid Agonists, Animals, Receptors, AMPA, Excitatory Amino Acid Antagonists

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Average
Average
Top 10%
hybrid