<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 18042254
Autonomous parvoviruses are strongly dependent on the phosphorylation of the major non-structural protein NS1 by members of the protein kinase C (PKC) family. Besides being accompanied with changes in the overall phosphorylation pattern of NS1 and acquiring new modifications at consensus PKC sites, ongoing minute virus of mice (MVM) infections lead to the appearance of new phosphorylated cellular protein species. This prompted us to investigate whether MVM actively interferes with phosphoinositol-dependent kinase (PDK)/PKC signalling. The activity, subcellular localization and phosphorylation status of the protein kinases PDK1, PKCeta and PKClambda were measured in A9 cells in the presence or absence of MVM infection. Parvovirus infection was found to result in activation of both PDK1 and PKCeta, as evidenced by changes in their subcellular distribution and overall (auto)phosphorylation. We show evidence that activation of PKCeta by PDK1 is driven by atypical PKClambda. By modifying the hydrophobic motif of PKCeta, PKClambda appeared to control docking and consecutive phosphorylation of PKCeta's activation-loop by PDK1, a process that was inhibited in vivo in the presence of a dominant-negative PKClambda mutant.
Cell Nucleus, Cytoplasm, Pyruvate Dehydrogenase Acetyl-Transferring Kinase, Fibroblasts, Protein Serine-Threonine Kinases, Cell Line, Isoenzymes, Mice, Microscopy, Fluorescence, Minute Virus of Mice, Animals, Phosphorylation, Protein Kinase C
Cell Nucleus, Cytoplasm, Pyruvate Dehydrogenase Acetyl-Transferring Kinase, Fibroblasts, Protein Serine-Threonine Kinases, Cell Line, Isoenzymes, Mice, Microscopy, Fluorescence, Minute Virus of Mice, Animals, Phosphorylation, Protein Kinase C
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 26 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |