Downloads provided by UsageCounts
BACKGROUND AND PURPOSE MELAS (mitochondrial encephalomyopathy, lactic acidosis and stroke‐like episodes) is a mitochondrial disease most usually caused by point mutations in tRNA genes encoded by mitochondrial DNA (mtDNA). Approximately 80% of cases of MELAS syndrome are associated with a m.3243A > G mutation in the MT‐TL1 gene, which encodes the mitochondrial tRNALeu (UUR). Currently, no effective treatments are available for this chronic progressive disorder. Treatment strategies in MELAS and other mitochondrial diseases consist of several drugs that diminish the deleterious effects of the abnormal respiratory chain function, reduce the presence of toxic agents or correct deficiencies in essential cofactors.EXPERIMENTAL APPROACH We evaluated the effectiveness of some common pharmacological agents that have been utilized in the treatment of MELAS, in yeast, fibroblast and cybrid models of the disease. The yeast model harbouring the A14G mutation in the mitochondrial tRNALeu(UUR) gene, which is equivalent to the A3243G mutation in humans, was used in the initial screening. Next, the most effective drugs that were able to rescue the respiratory deficiency in MELAS yeast mutants were tested in fibroblasts and cybrid models of MELAS disease.KEY RESULTS According to our results, supplementation with riboflavin or coenzyme Q10 effectively reversed the respiratory defect in MELAS yeast and improved the pathologic alterations in MELAS fibroblast and cybrid cell models.CONCLUSIONS AND IMPLICATIONS Our results indicate that cell models have great potential for screening and validating the effects of novel drug candidates for MELAS treatment and presumably also for other diseases with mitochondrial impairment.
mitochondrial disease; riboflavin; mitophagy.; melas; coenzyme q10; mitophagy, RNA, Transfer, Leu, Ubiquinone, Riboflavin, Mitophagy, Drug Evaluation, Preclinical, Saccharomyces cerevisiae, Fibroblasts, Models, Biological, Mitochondrial disease, Cell Line, Genes, Mitochondrial, MELAS, Mutation, Autophagy, MELAS Syndrome, Humans, Coenzyme Q10, Reactive Oxygen Species, Cells, Cultured
mitochondrial disease; riboflavin; mitophagy.; melas; coenzyme q10; mitophagy, RNA, Transfer, Leu, Ubiquinone, Riboflavin, Mitophagy, Drug Evaluation, Preclinical, Saccharomyces cerevisiae, Fibroblasts, Models, Biological, Mitochondrial disease, Cell Line, Genes, Mitochondrial, MELAS, Mutation, Autophagy, MELAS Syndrome, Humans, Coenzyme Q10, Reactive Oxygen Species, Cells, Cultured
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 41 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 41 | |
| downloads | 45 |

Views provided by UsageCounts
Downloads provided by UsageCounts