Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Developmentarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Development
Article . 1998 . Peer-reviewed
Data sources: Crossref
Development
Article . 1998
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Integrated FGF and BMP signaling controls the progression of progenitor cell differentiation and the emergence of pattern in the embryonic anterior pituitary

Authors: Thomas Edlund; Stefan Norlin; Johan Ericson; Thomas M. Jessell;

Integrated FGF and BMP signaling controls the progression of progenitor cell differentiation and the emergence of pattern in the embryonic anterior pituitary

Abstract

ABSTRACT The mechanisms by which inductive signals control the identity, proliferation and timing of differentiation of progenitor cells in establishing spatial pattern in developing vertebrate tissues remain poorly understood. We have addressed this issue in the embryonic anterior pituitary, an organ in which distinct hormone cell types are generated in a precise temporal and spatial order from an apparently homogenous ectodermal primordium. We provide evidence that in this tissue the coordinate control of progenitor cell identity, proliferation and differentiation is imposed by spatial and temporal restrictions in FGF- and BMP-mediated signals. These signals derive from adjacent neural and mesenchymal signaling centers: the infundibulum and ventral juxtapituitary mesenchyme. The infundibulum appears to have a dual signaling function, serving initially as a source of BMP4 and subsequently of FGF8. The ventral juxtapituitary mesenchyme appears to serve as a later source of BMP2 and BMP7. In vitro, FGFs promote the proliferation of progenitor cells, prevent their exit from the cell cycle and contribute to the specification of progenitor cell identity. BMPs, in contrast, have no apparent effect on cell proliferation but instead appear to act with FGFs to control the initial selection of thyrotroph and corticotroph progenitor identity.

Related Organizations
Keywords

Stem Cells, Gene Expression Regulation, Developmental, Cell Differentiation, Models, Biological, Hormones, Fibroblast Growth Factors, Mice, Pituitary Gland, Anterior, Pregnancy, Bone Morphogenetic Proteins, Mice, Inbred CBA, Animals, Female, Cell Division, Body Patterning, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    355
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
355
Top 10%
Top 1%
Top 1%
Upload OA version
Are you the author? Do you have the OA version of this publication?