<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 10905636
Cytosolic prostaglandin (PG) E synthase was purified from human brain cortex. The N-terminal amino acid sequence, PMTLGYXNIRGL, was identical to that of the human mu-class glutathione transferase (GST) M2 subunit. Complementary DNAs for human GSTM2, GSTM3, and GSTM4 subunits were cloned, and recombinant proteins were expressed as homodimers in Escherichia coli. The recombinant GSTM2-2 and 3-3 catalyzed the conversion of PGH2 to PGE2 at the rates of 282 and 923 nmol/min/mg of protein, respectively, at the optimal pH of 8, whereas GSTM4-4 was inactive; although all three enzymes showed GST activity. The PGE synthase activity depended on thiols, such as glutathione, dithiothreitol, 2-mercaptoethanol, or L-cysteine. Michaelis-Menten constants and turnover numbers for PGH2 were 141 microM and 10.8 min(-1) for GSTM2-2 and 1.5 mM and 130 min(-1) for GSTM3-3, respectively. GSTM2-2 and 3-3 may play crucial roles in temperature regulation, nociception, and sleep-wake regulation by producing PGE2 in the brain.
Cerebral Cortex, Peptide Fragments, Recombinant Proteins, Substrate Specificity, Intramolecular Oxidoreductases, Isoenzymes, Kinetics, Protein Subunits, Cytosol, Humans, Amino Acid Sequence, Sulfhydryl Compounds, Cloning, Molecular, Glutathione Transferase, Prostaglandin-E Synthases
Cerebral Cortex, Peptide Fragments, Recombinant Proteins, Substrate Specificity, Intramolecular Oxidoreductases, Isoenzymes, Kinetics, Protein Subunits, Cytosol, Humans, Amino Acid Sequence, Sulfhydryl Compounds, Cloning, Molecular, Glutathione Transferase, Prostaglandin-E Synthases
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 93 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |