Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Human Molecular Gene...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Human Molecular Genetics
Article . 2008 . Peer-reviewed
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Atypical Mowat-Wilson patient confirms the importance of the novel association between ZFHX1B/SIP1 and NuRD corepressor complex

Authors: Jacob Souopgui; Leonardus Van Grunsven; Leonardus Van Grunsven; Joël Vandekerckhove; Christine Michiels; Christine Michiels; Eric Bellefroid; +6 Authors

Atypical Mowat-Wilson patient confirms the importance of the novel association between ZFHX1B/SIP1 and NuRD corepressor complex

Abstract

Mutations in ZFHX1B cause Mowat-Wilson syndrome (MWS) but the precise mechanisms underlying the aberrant functions of mutant ZFHX1B proteins (also named Smad-interacting protein-1, SIP1) in patients are unknown. Using mass spectrometry analysis, we identified subunits of the NuRD corepressor complex in affinity-purified Zfhx1b complexes. We find that Zfhx1b associates with NuRD through its N-terminal domain, which contains a previously postulated NuRD interacting motif. Interestingly, this motif is substituted by an unrelated sequence in a recently described MWS patient. We show here that such aberrant ZFHX1B protein is unable to recruit NuRD subunits and displays reduced transcriptional repression activity on the XBMP4 gene promoter, a target of Zfhx1b. We further demonstrate that the NuRD component Mi-2beta is involved in repression of the Zfhx1b target gene E-cadherin as well as in Zfhx1b-induced neural induction in animal caps from Xenopus embryos. Thus, NuRD and Zfhx1b functionally interact, and defective NuRD recruitment by mutant human ZFHX1B can be a MWS-causing mechanism. This is the first study providing mechanistic insight into the aberrant function of a single domain of the multi-domain protein ZFHX1B/SIP1 in human disease.

Country
Belgium
Keywords

HISTONE DEACETYLASE, Embryo, Nonmammalian, Mental Retardation -- metabolism, Xenopus, Nerve Tissue Proteins -- genetics, SYNDROME PHENOTYPE, Autoantigens, Zfhx1b, chromatin modification, Autoantigens -- metabolism, CtBP, Adenosine Triphosphatases, sip1, RNA-Binding Proteins, Syndrome, Sciences bio-médicales et agricoles, RNA-Binding Proteins -- metabolism, Cadherins, Embryo, Abnormalities, MENTAL RETARDATION SYNDROME, Nonmammalian -- metabolism, RNA-Binding Proteins -- isolation & purification, Mi-2 Nucleosome Remodeling and Deacetylase Complex, Protein Structure, DNA-BINDING, Mowat-Wilson Syndrome, Nerve Tissue Proteins, Histone Deacetylases, DNA Helicases -- metabolism, Cell Line, MISSENSE MUTATION, NuRD, Intellectual Disability, E-CADHERIN, Adenosine Triphosphatases -- metabolism, Nerve Tissue Proteins -- metabolism, Animals, Humans, Abnormalities, Multiple, Multiple -- metabolism, RNA-Binding Proteins -- genetics, Nerve Tissue Proteins -- isolation & purification, SMAD-INTERACTING PROTEIN-1, DNA Helicases, RNA-Binding Proteins -- chemistry, HIRSCHSPRUNG-DISEASE, Protein Structure, Tertiary, Nerve Tissue Proteins -- chemistry, TRANSCRIPTIONAL REPRESSION, XENOPUS, Cadherins -- metabolism, Histone Deacetylases -- metabolism, Tertiary

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    84
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
84
Top 10%
Top 10%
Top 10%
bronze