Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cellarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cell
Article . 1987 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Cell
Article . 1987
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A molecular analysis of transformer, a gene in drosophila melanogaster that controls female sexual differentiation

Authors: M, McKeown; J M, Belote; B S, Baker;

A molecular analysis of transformer, a gene in drosophila melanogaster that controls female sexual differentiation

Abstract

The transformer (tra) gene regulates all aspects of somatic sexual differentiation in Drosophila melanogaster females and has no function in males. We have isolated the tra gene as part of a 200 kb chromosomal walk. The 25 kb region around tra contains four genetically identified complementation groups and at least six transcriptional units. Germ-line transformation experiments indicate that a fragment of 2 kb is sufficient to supply tra+ function. Mapping of cDNAs from tra and from the adjacent genes indicates that the tra+ transcription unit is 1.2 kb or less. This transcription unit gives rise to a 1.0 kb RNA that is female-specific and a 1.2 kb RNA that is present in both sexes. tra+ and the gene at the 3' side overlap slightly in the 3' ends of their RNA coding sequences. These results suggest that tra+ function is regulated at the level of production of the female-specific tra RNA. The fact that a tra transcript is found in males raises interesting possibilities for how tra expression is controlled.

Keywords

Male, Sex Differentiation, Transcription, Genetic, Genetic Complementation Test, Drosophila melanogaster, Transformation, Genetic, Gene Expression Regulation, Genes, Animals, Female

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    132
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
132
Top 10%
Top 1%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!