Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2002 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Identification of Structural Motifs and Amino Acids within the Structure of Human Heparan Sulfate 3-O-Sulfotransferase That Mediate Enzymatic Function

Authors: Ganesh Venkataraman; James R. Myette; Rahul Raman; Viswanathan Sasisekharan; Ram Sasisekharan;

Identification of Structural Motifs and Amino Acids within the Structure of Human Heparan Sulfate 3-O-Sulfotransferase That Mediate Enzymatic Function

Abstract

In an accompanying paper [J. R. Myette, Z. Shriver, J. Liu, G. Venkataraman, and R. Sasisekharan (2002) Biochem. Biophys. Res. Commun. 290, 1206-1213], we described the purification and biochemical characterization of a soluble, recombinantly expressed form of the human heparan sulfate 3-O-sulfotransferase (3-OST-1). Such an important first step enables detailed structure-function studies for this class of enzymes. Herein, we describe a complimentary, structure-based homology modeling approach for predicting 3-OST-1 structure. This approach employs a variety of structural analysis and molecular modeling tools used in conjunction with protein crystallographic studies of related enzymes. In this manner, we describe important motifs within the predicted three-dimensional structure of the enzyme and identify specific amino acids that are likely important for enzymatic function.

Related Organizations
Keywords

Models, Molecular, Binding Sites, Sequence Homology, Amino Acid, Protein Conformation, Amino Acid Motifs, Molecular Sequence Data, In Vitro Techniques, Recombinant Proteins, Adenosine Diphosphate, Catalytic Domain, Cystine, Humans, Amino Acid Sequence, Sulfotransferases, Nucleoside-Phosphate Kinase

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!