<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 17379811
Changes in the genes encoding sensory receptor proteins are an essential step in the evolution of new sensory capacities. In primates, trichromatic color vision evolved after changes in X chromosome–linked photopigment genes. To model this process, we studied knock-in mice that expressed a human long-wavelength–sensitive (L) cone photopigment in the form of an X-linked polymorphism. Behavioral tests demonstrated that heterozygous females, whose retinas contained both native mouse pigments and human L pigment, showed enhanced long-wavelength sensitivity and acquired a new capacity for chromatic discrimination. An inherent plasticity in the mammalian visual system thus permits the emergence of a new dimension of sensory experience based solely on gene-driven changes in receptor organization.
Male, Primates, Heterozygote, Neuronal Plasticity, X Chromosome, Light, Biological Evolution, Mice, Discrimination, Psychological, X Chromosome Inactivation, Electroretinography, Retinal Cone Photoreceptor Cells, Animals, Humans, Female, Genetic Engineering, Retinal Pigments, Color Perception
Male, Primates, Heterozygote, Neuronal Plasticity, X Chromosome, Light, Biological Evolution, Mice, Discrimination, Psychological, X Chromosome Inactivation, Electroretinography, Retinal Cone Photoreceptor Cells, Animals, Humans, Female, Genetic Engineering, Retinal Pigments, Color Perception
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 187 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |