
Brain ischemia often results in neuronal necrosis, which may spread death to neighboring cells. However, the molecular events of neuronal necrosis and the mechanisms of this spreading death are poorly understood due to the limited genetic tools available for deciphering complicated responses in mammalian brains. Here, we engineered a Drosophila model of necrosis in a sub-population of neurons by expressing a leaky cation channel in the Drosophila eye. Expression of this channel caused necrosis in defined neurons as well as extensive spreading of cell death. Jun N-terminal kinase (JNK)-mediated, caspase-independent apoptosis was the primary mechanism of cell death in neurons, while caspase-dependent apoptosis was primarily involved in non-neuronal cell death. Furthermore, the JNK activation in surrounding neurons was triggered by reactive oxygen species (ROS) and Eiger (Drosophila tumor necrosis factor α (TNFα)) released from necrotic neurons. Because the Eiger/ROS/JNK signaling was also required for cell death induced by hypoxia and oxidative stress, our fly model of spreading death may be similar to brain ischemia in mammals. We performed large-scale genetic screens to search for novel genes functioning in necrosis and/or spreading death, from which we identified several classes of genes. Among them, Rho-associated kinase (ROCK) had been reported as a promising drug target for stroke treatment with undefined mechanisms. Our data indicate that ROCK and the related trafficking pathway genes regulate neuronal necrosis. We propose the suppression of the function of the trafficking system, ROS and cytokines, such as TNFα, as translational applications targeting necrosis and spreading death.
Neurons, MAP Kinase Signaling System, JNK Mitogen-Activated Protein Kinases, Membrane Proteins, Apoptosis, Caspase Inhibitors, Recombinant Proteins, Brain Ischemia, Animals, Genetically Modified, Necrosis, Oxidative Stress, Caspases, Animals, Drosophila Proteins, Original Article, Drosophila, Compound Eye, Arthropod, Receptors, AMPA, Reactive Oxygen Species
Neurons, MAP Kinase Signaling System, JNK Mitogen-Activated Protein Kinases, Membrane Proteins, Apoptosis, Caspase Inhibitors, Recombinant Proteins, Brain Ischemia, Animals, Genetically Modified, Necrosis, Oxidative Stress, Caspases, Animals, Drosophila Proteins, Original Article, Drosophila, Compound Eye, Arthropod, Receptors, AMPA, Reactive Oxygen Species
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 35 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
