Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1038/s41598...
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://www.nature.com/article...
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2020
Data sources: PubMed Central
versions View all 3 versions
addClaim

In-situ Raman analysis of hydrogenation in well-defined ultrathin molybdenum diselenide deposits synthesized through vapor phase deposition

Authors: Santiago, Peter Joseph; Ramirez, Francisco; Tavassol, Hadi;

In-situ Raman analysis of hydrogenation in well-defined ultrathin molybdenum diselenide deposits synthesized through vapor phase deposition

Abstract

AbstractWe report on the synthesis, characterization and in-situ Raman spectroscopy analysis of hydrogenation in ultrathin crystalline MoSe2 deposits. We use a controllable vapor phase synthesis method using MoSe2 powder as the only precursor, to fabricate nano- to micro-size few layer thick MoSe2 deposits with tunable number densities on SiO2/Si substrates. We employ this controllable synthesis method to correlate characteristic Raman spectroscopy response of MoSe2 at ca. 242 cm−1 (A1g) and ca. 280 cm−1 (E2g1) with the thickness of the deposits acquired from atomic force microscopy (AFM). We also use this array of well-defined atomically thin MoSe2 deposits to study possible hydrogenation effects on select architectures using in-situ Raman spectroscopy. Interestingly, our analysis indicates that ultrathin MoSe2 deposits with exposed edges show a blue shift of 1–2 cm−1 when exposed to H2 flow at 150–250 sccm for 2–4 hours in a sealed reaction cell. Exposure to Ar flow under same condition reverses the observed shift in the A1g mode of the select MoSe2 deposits. Our measurements provide in-situ evidence for hydrogen adsorption on MoSe2 deposits at room temperature and insight into the possible active sites for hydrogen reactions on layered dichalcogenides at lower dimensions.

Keywords

Article

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
gold